Add like
Add dislike
Add to saved papers

Experimental Determination of Partitioning in the Fe-Ni System for Applications to Modeling Meteoritic Metals.

Experimental trace element partitioning values are often used to model the chemical evolution of metallic phases in meteorites, but limited experimental data were previously available to constrain the partitioning behavior in the basic Fe-Ni system. In this study, we conducted experiments that produced equilibrium solid metal and liquid metal phases in the Fe-Ni system and measured the partition coefficients of 25 elements. The results are in good agreement with values modeled from IVB iron meteorites and with the limited previous experimental data. Additional experiments with low levels of S and P were also conducted, to help constrain the partitioning behaviors of elements as a function of these light elements. The new experimental results were used to derive a set of parameterization values for element solid metal-liquid metal partitioning behavior in the Fe-Ni-S, Fe-Ni-P, and Fe-Ni-C ternary systems at 0.1 MPa. The new parameterizations require that the partitioning behaviors in the light-element-free Fe-Ni system are those determined experimentally by this study, in contrast to previous parameterizations that allowed this value to be determined as a best-fit parameter. These new parameterizations, with self-consistent values for partitioning in the end-member Fe-Ni system, provide a valuable resource for future studies that model the chemical evolution of metallic phases in meteorites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app