Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Tissue engineering-relevant characteristics of ex vivo and monolayer-expanded chondrocytes from the notch versus trochlea of human knee joints.

PURPOSE: The aim was to analyse the biological characteristics of chondrocytes from the two biopsy sites notch vs. trochlea of human knee joints. The question was whether tissue engineering-relevant characteristics such as viability and mRNA expression profile would be comparable ex vivo and after monolayer expansion, as these are parts of routine autologous chondrocyte implantation (ACI).

METHODS: Biopsies from the intercondylar notch and the lateral aspect of the trochlea from 20 patients with ICRS grades 3 and 4 cartilage defects were harvested during arthroscopy. Collagen types 1, 2, and 10 mRNA were quantified by polymerase chain reaction.

RESULTS: Compared with notch chondrocytes, ex vivo trochlea chondrocytes had comparable cell numbers, vitality and aggrecan, collagen types 1, -2 and -10 mRNA expression. After monolayer expansion both notch and trochlea chondrocyte characteristics were comparably altered, regardless of their biopsy origin, and no significant differences in viability and mRNA expression were noted.

CONCLUSIONS: Collectively, these findings suggest that tissue engineering-relevant characteristics of notch and trochlea chondrocytes are comparable ex vivo and after monolayer expansion. Thus, trochlea chondrocytes promise clinical potential and chondrocytes for ACI could potentially be generated from both notch and trochlea biopsy sites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app