Add like
Add dislike
Add to saved papers

Donor-Acceptor Control in Grown-in-Glass Gallium Oxide Nanocrystals by Crystallization-driven Heterovalent Doping.

Incorporation of doping ions in nanocrystals is a strategy for providing nanophases with functions directly related to ion features. At the nanoscale, however, doping can also activate more complex effects mediated by perturbation of the nanophase size and structure. Here, we report a paradigmatic case in which we modify grown-in-glass γ-Ga2 O3 nanophases by nickel or titanium doping of the starting glass, so as to control the concentration of oxygen and gallium vacancies responsible for the light emission. Optical absorption and luminescence show that Ni2+ and Ti4+ ions enter into the nanophase, but differential scanning calorimetry and X-ray diffraction indicate that Ni and Ti also work as modifiers of nanocrystal growth. As a result, doping influences nanocrystal size and concentration, which in turn dictate the number of donors and acceptors per nanocrystal. Finally, the chain of effects turns out to control both the intensity and spectral distribution of the light emission.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app