Add like
Add dislike
Add to saved papers

Enantioselective inhibition of d-serine transport by (S)-ketamine.

BACKGROUND AND PURPOSE: Patients with major depressive disorder receiving racemic ketamine, (R,S)-ketamine, experience transient increases in Clinician-Administered Dissociative States Scale scores and a coincident drop in plasma d-serine levels. The results suggest that (R,S)-ketamine produces an immediate, concentration-dependent pharmacological effect on d-serine plasma concentrations. One potential source of this effect is (R,S)-ketamine-induced inhibition of the transporter ASCT2, which regulates intracellular d-serine concentrations. In this study, we tested this hypothesis by examining the effect of (S)- and (R)-ketamine on ASCT2-mediated transport of d-serine in PC-12 and 1321N1 cells and primary neuronal cells in culture.

EXPERIMENTAL APPROACH: Intracellular and extracellular d-serine levels were determined using capillary electrophoresis-laser-induced fluorescence and liquid chromatography-mass spectrometry respectively. Expression of ASCT2, Asc-1 and serine racemase was determined utilizing Western blotting.

KEY RESULTS: (S)-Ketamine produced a concentration-dependent increase in intracellular d-serine and reduced extracellular d-serine accumulation. In contrast, (R)-ketamine decreased both intracellular and extracellular d-serine levels. The ASCT2 inhibitor, benzyl-d-serine (BDS), and ASCT2 gene knockdown mimicked the action of (S)-ketamine on d-serine in PC-12 cells, while the Asc-1 agonist d-isoleucine reduced intracellular d-serine and increased extracellular d-serine accumulation. This response to d-isoleucine was not affected by BDS or (S)-ketamine. Primary cultures of rat neuronal cells expressed ASCT2 and were responsive to (S)-ketamine and BDS. (S)- and (R)-ketamine increased the expression of monomeric serine racemase in all the cells studied, with (S)-ketamine having the greatest effect.

CONCLUSIONS AND IMPLICATIONS: (S)-Ketamine decreased cellular export of d-serine via selective inhibition of ASCT2, and this could represent a possible source of dissociative effects observed with (R,S)-ketamine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app