Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

UV resonance raman investigation of electronic transitions in alpha-helical and polyproline II-like conformations.

UV resonance Raman (UVRR) excitation profiles and Raman depolarization ratios were measured for a 21-residue predominantly alanine peptide, AAAAA(AAARA) 3A (AP), excited between 194 and 218 nm. Excitation within the pi-->pi* electronic transitions of the amide group results in UVRR spectra dominated by amide vibrations. The Raman cross sections and excitation profiles provide information about the nature of the electronic transitions of the alpha-helix and polyproline II (PPII)-like peptide conformations. AP is known to be predominantly alpha-helical at low temperatures and to take on a PPII helix-like conformation at high temperatures. The PPII-like and alpha-helix conformations show distinctly different Raman excitation profiles. The PPII-like conformation cross sections are approximately twice those of the alpha-helix. This is due to hypochromism that results from excitonic interactions between the NV 1 transition of one amide group with higher energy electronic transitions of other amide groups, which decreases the alpha-helical NV 1 (pi-->pi*) oscillator strengths. Excitation profiles of the alpha-helix and PPII-like conformations indicate that the highest signal-to-noise Raman spectra of alpha-helix and PPII-like conformations are obtained at excitation wavelengths of 194 and 198 nm, respectively. We also see evidence of at least two electronic transitions underlying the Raman excitation profiles of both the alpha-helical and the PPII-like conformations. In addition to the well-known approximately 190 nm pi-->pi* transitions, the Raman excitation profiles and Raman depolarization ratio measurements show features between 205-207 nm, which in the alpha-helix likely results from the parallel excitonic component. The PPII-like helix appears to also undergo excitonic splitting of its pi-->pi* transition which leads to a 207 nm feature.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app