Add like
Add dislike
Add to saved papers

Dual-Path Graph Neural Network with Adaptive Auxiliary Module for Link Prediction.

Big Data 2024 March 26
Link prediction, which has important applications in many fields, predicts the possibility of the link between two nodes in a graph. Link prediction based on Graph Neural Network (GNN) obtains node representation and graph structure through GNN, which has attracted a growing amount of attention recently. However, the existing GNN-based link prediction approaches possess some shortcomings. On the one hand, because a graph contains different types of nodes, it leads to a great challenge for aggregating information and learning node representation from its neighbor nodes. On the other hand, the attention mechanism has been an effect instrument for enhancing the link prediction performance. However, the traditional attention mechanism is always monotonic for query nodes, which limits its influence on link prediction. To address these two problems, a Dual-Path Graph Neural Network (DPGNN) for link prediction is proposed in this study. First, we propose a novel Local Random Features Augmentation for Graph Convolution Network as a baseline of one path. Meanwhile, Graph Attention Network version 2 based on dynamic attention mechanism is adopted as a baseline of the other path. And then, we capture more meaningful node representation and more accurate link features by concatenating the information of these two paths. In addition, we propose an adaptive auxiliary module for better balancing the weight of auxiliary tasks, which brings more benefit to link prediction. Finally, extensive experiments verify the effectiveness and superiority of our proposed DPGNN for link prediction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app