Add like
Add dislike
Add to saved papers

Antagonistic functions of CTL1 and SUH1 mediate cell wall assembly in Arabidopsis .

Plant Direct 2024 March
Plant genomes contain numerous genes encoding chitinase-like (CTL) proteins, which have a similar protein structure to chitinase belonging to the glycoside hydrolase (GH) family but lack the chitinolytic activity to cleave the β -1,4-glycosidic bond in chitins, polymers of N -acetylglucosamine. CTL1 mutations found in rice and Arabidopsis have caused pleiotropic developmental defects, including altered cell wall composition and decreased abiotic stress tolerance, likely due to reduced cellulose content. In this study, we identified suppressor of hot2 1 ( suh1 ) as a genetic suppressor of the ctl1 hot2-1 mutation in Arabidopsis . The mutation in SUH1 restored almost all examined ctl1 hot2-1 defects to nearly wild-type levels or at least partially. SUH1 encodes a Golgi-located type II membrane protein with glycosyltransferase (GT) activity, and its mutations lead to a reduction in cellulose content and hypersensitivity to cellulose biosynthesis inhibitors, although to a lesser extent than ctl1 hot2-1 mutation. The SUH1 promoter fused with the GUS reporter gene exhibited GUS activity in interfascicular fibers and xylem in stems; meanwhile, the ctl1 hot2-1 mutation significantly increased this activity. Our findings provide genetic and molecular evidence that the antagonistic activities of CTL1 and SUH1 play an essential role in assembling the cell wall in Arabidopsis .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app