Add like
Add dislike
Add to saved papers

Mapping the APOE structurally on missense variants in elderly Brazilians.

Cardiovascular diseases (CVDs) pose a significant global health threat, with familial hypercholesterolemia (FH) being a key genetic contributor. The apolipoprotein E (APOE) gene plays a vital role in lipid metabolism, and its variants are associated with CVD risk. This study explores prevalent APOE variants (p.R163C, p.R176C, p.R246C and p.V254E) using genetic and structural analyses. The research, initiated by identifying high-frequency APOE variants through the ABraOM database, utilizes homology modeling and molecular dynamics (MD) simulations to understand the structural consequences. The major lipid-binding region, a critical domain for lipid metabolism, was a focal point. Structural dynamics, including principal component analyses and domain movement analyses, highlighted distinct patterns in APOE variants compared to the wild type (WT). Results revealed significant differences in the structural behavior of variants, particularly in the Major lipid-binding region. The identification of an 'elbow' structure with two states (Elbow I and Elbow II) provided insights into conformational changes. Notably, variants exhibited unique patterns in hydrogen bonding (hb) and hydrophobic interactions, indicating potential functional consequences. The study further associated APOE variants with clinical outcomes, including cognitive impairment and cholesterol levels. Specific variants demonstrated correlations with cognitive decline and variations in lipid profiles, emphasizing their relevance to cardiovascular and neurobiological health. In conclusion, this integrated approach enhances our understanding of APOE variants, shedding light on their role in lipid metabolism and cardiovascular health. The identified structural 'elbows' and their association with clinical outcomes offer a nuanced perspective, guiding future research toward targeted interventions for diseases linked to lipid metabolism and neurobiology.Communicated by Ramaswamy H. Sarma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app