Add like
Add dislike
Add to saved papers

CSANet: a lightweight channel and spatial attention neural network for grading diabetic retinopathy with optical coherence tomography angiography.

BACKGROUND: Diabetic retinopathy (DR) is one of the most common eye diseases. Convolutional neural networks (CNNs) have proven to be a powerful tool for learning DR features; however, accurate DR grading remains challenging due to the small lesions in optical coherence tomography angiography (OCTA) images and the small number of samples.

METHODS: In this article, we developed a novel deep-learning framework to achieve the fine-grained classification of DR; that is, the lightweight channel and spatial attention network (CSANet). Our CSANet comprises two modules: the baseline model, and the hybrid attention module (HAM) based on spatial attention and channel attention. The spatial attention module is used to mine small lesions and obtain a set of spatial position weights to address the problem of small lesions being ignored during the convolution process. The channel attention module uses a set of channel weights to focus on useful features and suppress irrelevant features.

RESULTS: The extensive experimental results for the OCTA-DR and diabetic retinopathy analysis challenge (DRAC) 2022 data sets showed that the CSANet achieved state-of-the-art DR grading results, showing the effectiveness of the proposed model. The CSANet had an accuracy rate of 97.41% for the OCTA-DR data set and 85.71% for the DRAC 2022 data set.

CONCLUSIONS: Extensive experiments using the OCTA-DR and DRAC 2022 data sets showed that the proposed model effectively mitigated the problems of mutual confusion between DRs of different severity and small lesions being neglected in the convolution process, and thus improved the accuracy of DR classification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app