Add like
Add dislike
Add to saved papers

Minimizing Task Age upon Decision for Low-Latency MEC Networks Task Offloading with Action-Masked Deep Reinforcement Learning.

Sensors 2024 April 29
In this paper, we consider a low-latency Mobile Edge Computing (MEC) network where multiple User Equipment (UE) wirelessly reports to a decision-making edge server. At the same time, the transmissions are operated with Finite Blocklength (FBL) codes to achieve low-latency transmission. We introduce the task of Age upon Decision (AuD) aimed at the timeliness of tasks used for decision-making, which highlights the timeliness of the information at decision-making moments. For the case in which dynamic task generation and random fading channels are considered, we provide a task AuD minimization design by jointly selecting UE and allocating blocklength. In particular, to solve the task AuD minimization problem, we transform the optimization problem to a Markov Decision Process problem and propose an Error Probability-Controlled Action-Masked Proximal Policy Optimization (EMPPO) algorithm. Via simulation, we show that the proposed design achieves a lower AuD than baseline methods across various network conditions, especially in scenarios with significant channel Signal-to-Noise Ratio (SNR) differences and low average SNR, which shows the robustness of EMPPO and its potential for real-time applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app