Add like
Add dislike
Add to saved papers

Research Enhancing Acidic Mine Wastewater Purification: Innovations in Red Mud-Loess.

Materials 2024 April 27
This study investigates the adsorption of cadmium (Cd) by red mud-loess mixed materials and assesses the influence of quartz sand content on permeability. Shear tests are conducted using various pore solutions to analyze shear strength parameters. The research validates solidification methods for cadmium-contaminated soils and utilizes SEM-EDS, FTIR, and XRD analysis to elucidate remediation mechanisms. The findings suggest that the quartz sand content crucially affects the permeability of fine-grained red mud-loess mixtures. The optimal proportion of quartz sand is over 80%, significantly enhancing permeability, reaching a coefficient of 6.7 × 10-4 cm/s. Insufficient quartz sand content of less than 80% fails to meet the barrier permeability standards, leading to a reduced service life of the engineered barrier. Adsorption tests were conducted using various pore solutions, including distilled water, acidic solutions, and solutions containing Cd, to evaluate the adsorption capacity and shear characteristics of the red mud-loess mixture. Additionally, the study examines the behavior of Cd-loaded red mud-loess mixtures in various pore solutions, revealing strain-hardening trends and alterations in cohesiveness and internal friction angle with increasing Cd concentrations. The analysis of cement-red mud-loess-solidified soil demonstrates enhancements in soil structure and strength over time, attributed to the formation of crystalline structures and mineral formations induced by the curing agent. These findings provide valuable insights into the remediation of cadmium-contaminated soils.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app