Add like
Add dislike
Add to saved papers

Metabolomics unveil key pathways underlying the synergistic activities of aztreonam and avibactam against multidrug-resistant Escherichia coli.

PURPOSE: Aztreonam/avibactam is effective against serious infections caused by Gram-negative bacteria including Enterobacterales harboring metallo-β-lactamases. While the utility of this combination has been established in vitro and in clinical trials, the purpose of this study is to enhance our understanding of the underlying mechanism responsible for their activities through metabolomic profiling of a multidrug-resistant Escherichia coli clinical isolate.

METHODS: Metabolomic analyses of time-dependent changes in endogenous bacterial metabolites in a clinical isolate of a multidrug-resistant E. coli treated with aztreonam and avibactam were performed. E. coli metabolomes were compared at 15 min, 1 h and 24 h following treatments with either avibactam (4 mg/L), aztreonam (4 mg/L), or aztreonam (4 mg/L) + avibactam (4 mg/L).

RESULTS: Drug treatment affected 326 metabolites with magnitude changes of at least 2-fold, most of which are involved primarily in peptidoglycan biosynthesis, nucleotide metabolism, and lipid metabolism. The feedstocks for peptidoglycan synthesis were depleted by aztreonam/avibactam combination; a significant downstream increase in nucleotide metabolites and a release of lipids were observed at the three timepoints.

CONCLUSION: The findings indicate that the aztreonam/avibactam combination accelerates structural damage to the bacterial membrane structure and their actions were immediate and sustained compared to aztreonam or avibactam alone. By inhibiting the production of crucial cell wall precursors, the combination may have inflicted damages on bacterial DNA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app