Add like
Add dislike
Add to saved papers

Ultrasonic-assisted in situ synthesis of MOF-199 on the surface of carboxylated cellulose fibers for efficient adsorption of methylene blue.

RSC Advances 2024 May 3
A high-efficiency porous adsorbent, MOF-199/carboxylated cellulose fibers (MOF-199/CCF), was synthesized in situ at room temperature through carboxylation modification, simple sonication, and vacuum drying. The sonication method produced small MOF-199 particles (tens of nanometers), which allowed for uniform distribution of MOF-199 on CCF and improved its efficiency. The presence of CCF carriers reduces the agglomeration of MOF-199 and enhances its performance. The BET-specific surface area of MOF-199/CCF is 264.83 m2 g-1 , which is much larger than that of CCF (2.31 m2 g-1 ), proving the successful modification of CCF by MOF-199. MOF-199/CCF exhibits better adsorption capacity than CCF, with an adsorption capacity of 659.6 mg g-1 of methylene blue within 30 minutes, and good recycling performance. This work presents a straightforward method for preparing efficient cellulose-based adsorbent materials and offers a novel approach for synthesizing MOF composites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app