Add like
Add dislike
Add to saved papers

The effect of friction stir processing on mechanical, wear and corrosion characteristics of Cu-AlN-BN surface composite.

Heliyon 2024 May 16
This research investigates the impact of hybrid particles dispersed onto the surface of a copper matrix using Friction Stir Processing (FSP) on its microstructural, mechanical, and corrosion behavior. The hybrid particles under study consist of equal fractions of Aluminium Nitride (AlN) and Boron Nitride (BN). Microstructural characterization confirms breakdown of grain size due to dynamic recrystallization and presence of particles, along with their effective bonding to copper matrix. Attained results indicated a significant enhancement in hardness, with an increase of up to 3.9 % upon the introduction of particles onto the surface. Moreover, the tensile properties exhibit noticeable improvements in terms of ultimate tensile strength (6.39 %) and yield strength (6.12 %), albeit at the expense of reduced ductility in the copper matrix. Furthermore, the wear rate (decreases up to 22 %) and corrosion rate of the developed composites demonstrate a decreasing trend with the introduction of particles. This improvement can be attributed to the reduction in grain size during the FSP process and the formation of a nitride passive layer facilitated by the reinforced hybrid particles, thereby effectively inhibiting the corrosion rate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app