Add like
Add dislike
Add to saved papers

Transcriptome Analysis of Different Aquaculture Substrates on the Immune Response of Babylonia areolata.

To assess the impact of different substrates in a recirculating water system on the immune response and antioxidant capacity of Babylonia areolata, we conducted a comparative analysis of the transcriptomes and antioxidant performance of the digestive glands in three substrate environments (sand-S group, ceramic granules-C group, and PVC breeding nest-P group). Transcriptome results revealed that the S group and P group exhibited the highest number of differentially expressed genes (DEGs), with a total of 2218 DEGs, including 928 upregulated and 1290 downregulated DEGs. The C group and P group had 1055 DEGs in common, with 316 upregulated and 739 downregulated DEGs. The C group and S group had the fewest DEGs, with 521 in total, including 303 upregulated and 218 downregulated DEGs. GO enrichment analysis showed that in the S vs P group, terms such as catalytic activity, membrane part, and cellular process were enriched with 287, 262, and 180 DEGs, respectively. In the C vs P group, binding, cellular process, and cell part were enriched with 146, 135, and 127 DEGs, respectively. In the C vs S group, catalytic activity, membrane part, and metabolic process were enriched with 90, 83, and 59 DEGs, respectively. Kegg enrichment analysis revealed significant changes in immune-related pathways in the S vs P group, including lysosome, phagosome, and leukocyte transendothelial migration, with 30, 13, and 10 enriched DEGs, respectively. In the C vs P group, phagosome, drug metabolism-other enzymes, and N-Glycan biosynthesis showed significant changes in immune-related pathways, with 9, 6, and 4 enriched DEGs, respectively. In the C vs S group, lysosome, PPAR signaling pathway, and fatty acid degradation exhibited significant changes in immune-related pathways, with 8, 4, and 3 enriched DEGs, respectively. Regarding antioxidant capacity, the S group showed significantly higher total T-AOC than the other experimental groups, while CAT, SOD, POD, and AKP were lower than in the C and P groups. The ACP level in the Sand group was not significantly different from the P group but significantly lower than the C group. In conclusion, substrate environments significantly influence the immune-related genes and key antioxidant enzyme activities in B. areolata.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app