Add like
Add dislike
Add to saved papers

A neural network-based algorithm for the reconstruction and filtering of single particle trajectory in magnetic particle tracking.

Magnetic particle tracking (MPT) is a recently developed non-invasive measurement technique that has gained popularity for studying dense particulate or granular flows. This method involves tracking the trajectory of a magnetically labeled particle, the field of which is modeled as a dipole. The nature of this method allows it to be used in opaque environments, which can be highly beneficial for the measurement of dense particle dynamics. However, since the magnetic field of the particle used is weak, the signal-to-noise ratio is usually low. The noise from the measuring devices contaminates the reconstruction of the magnetic tracer's trajectory. A filter is then needed to reduce the noise in the final trajectory results. In this work, we present a neural network-based framework for MPT trajectory reconstruction and filtering, which yields accurate results and operates at very high speed. The reconstruction derived from this framework is compared to the state-of-the-art extended Kalman filter-based reconstruction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app