Add like
Add dislike
Add to saved papers

Nanoconfinement of Carbon Dioxide within Interfacial Aqueous/Ionic Liquid Systems.

Nanoporous, gas-selective membranes have shown encouraging results for the removal of CO2 from flue gas, yet the optimal design for such membranes is often unknown. Therefore, we used molecular dynamics simulations to elucidate the behavior of CO2 within aqueous and ionic liquid (IL) systems ([EMIM][TFSI] and [OMIM][TFSI]), both confined individually and as an interfacial aqueous/IL system. We found that within aqueous systems the mobility of CO2 is reduced due to interactions between the CO2 oxygens and hydroxyl groups on the pore surface. Within the IL systems, we found that confinement has a greater effect on the [EMIM][TFSI] system as opposed to the [OMIM][TFSI] system. Paradoxically, the larger and more asymmetrical [OMIM]+ molecule undergoes less efficient packing, resulting in fewer confinement effects. Free energy surfaces of the nanoconfined aqueous/IL interface demonstrate that CO2 will transfer spontaneously from the aqueous to the IL phase.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app