Add like
Add dislike
Add to saved papers

Microfluidic Immunosensor Platform for Sensitive Detection of Human Epidermal Growth Factor Receptor-2 Based on Enhanced Cathode Electrochemiluminescence of Bimetallic Nanoclusters.

In this work, a microfluidic immunosensor chip was developed by incorporating microfluidic technology with electrochemiluminescence (ECL) for sensitive detection of human epidermal growth factor receptor-2 (HER2). The immunosensor chip can achieve robust reproducibility in mass production by integrating multiple detection units in a series. Notably, nanoscale materials can be better adapted to microfluidic systems, greatly enhancing the accuracy of the immunosensor chip. Ag@Au NCs closed by glutathione (GSH) were introduced in the ECL microfluidic immunosensor system with excellent and stable ECL performance. The synthesized CeO2 -Au was applied as a coreaction promoter in the ECL signal amplification system, which made the result of HER2 detection more reliable. In addition, the designed microfluidic immunosensor chip integrated the biosensing system into a microchip, realizing rapid and accurate detection of HER2 by its high throughput and low usage. The developed short peptide ligand NARKFKG (NRK) achieved an effective connection between the antibody and nanocarrier for improving the detection efficiency of the sensor. The immunosensor chip had better storage stability and sensitivity than traditional detection methods, with a wide detection range from 10 fg·mL-1 to 100 ng·mL-1 and a low detection limit (LOD) of 3.29 fg·mL-1 . In general, a microfluidic immunosensor platform was successfully constructed, providing a new idea for breast cancer (BC) clinical detection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app