Journal Article
Review
Add like
Add dislike
Add to saved papers

Re-evaluating the Need for Routine Maximal Aerobic Capacity Testing within Fighter Pilots.

INTRODUCTION: There is a current belief in aviation suggesting that aerobic training may reduce G-tolerance due to potential negative impacts on arterial pressure response. Studies indicate that increasing maximal aerobic capacity (<mml:math id="ie1" display="inline"><mml:mrow><mml:mover><mml:mtext>V</mml:mtext><mml:mo>˙</mml:mo></mml:mover></mml:mrow></mml:math>o₂ max) through aerobic training does not hinder G-tolerance. Moreover, sustained centrifuge training programs revealed no instances where excessive aerobic exercise compromised a trainee's ability to complete target profiles. The purpose of this review article is to examine the current research in the hope of establishing the need for routine <mml:math id="ie2" display="inline"><mml:mrow><mml:mover><mml:mtext>V</mml:mtext><mml:mo>˙</mml:mo></mml:mover></mml:mrow></mml:math>o₂-max testing in air force pilot protocols. METHODS: A systematic search of electronic databases including Google Scholar, PubMed, the Aerospace Medical Association, and Military Medicine was conducted. Keywords related to "human performance," "Air Force fighter pilots," "aerobic function," and "maximal aerobic capacity" were used in various combinations. Articles addressing exercise physiology, G-tolerance, physical training, and fighter pilot maneuvers related to human performance were considered. No primary data collection involving human subjects was conducted; therefore, ethical approval was not required. RESULTS: The <mml:math id="ie3" display="inline"><mml:mrow><mml:mover><mml:mtext>V</mml:mtext><mml:mo>˙</mml:mo></mml:mover></mml:mrow></mml:math>o₂-max test provides essential information regarding a pilot's ability to handle increased Gz -load. It assists in predicting G-induced loss of consciousness by assessing anti-G straining maneuver performance and heart rate variables during increased G-load. DISCUSSION: <mml:math id="ie4" display="inline"><mml:mrow><mml:mover><mml:mtext>V</mml:mtext><mml:mo>˙</mml:mo></mml:mover></mml:mrow></mml:math>o₂-max testing guides tailored exercise plans, optimizes cardiovascular health, and disproves the notion that aerobic training hampers G-tolerance. Its inclusion in air force protocols could boost readiness, reduce health risks, and refine training for fighter pilots' safety and performance. This evidence-backed approach supports integrating <mml:math id="ie5" display="inline"><mml:mrow><mml:mover><mml:mtext>V</mml:mtext><mml:mo>˙</mml:mo></mml:mover></mml:mrow></mml:math>o₂-max testing for insights into fitness, risks, and tailored exercise. Zeigler Z, Acevedo AM. Re-evaluating the need for routine maximal aerobic capacity testing within fighter pilots . Aerosp Med Hum Perform. 2024; 95(5):273-277.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app