Journal Article
Multicenter Study
Add like
Add dislike
Add to saved papers

Examining the typical hemodynamic performance of nearly 3000 modern surgical aortic bioprostheses.

OBJECTIVES: The objective of this analysis was to assess the normal haemodynamic performance of contemporary surgical aortic valves at 1 year postimplant in patients undergoing surgical aortic valve replacement for significant valvular dysfunction. By pooling data from 4 multicentre studies, this study will contribute to a better understanding of the effectiveness of surgical aortic valve replacement procedures, aiding clinicians and researchers in making informed decisions regarding valve selection and patient management.

METHODS: Echocardiograms were assessed by a single core laboratory. Effective orifice area, dimensionless velocity index, mean aortic gradient, peak aortic velocity and stroke volume were evaluated.

RESULTS: The cohort included 2958 patients. Baseline age in the studies ranged from 70.1 ± 9.0 to 83.3 ± 6.4 years, and Society of Thoracic Surgeons risk of mortality was 1.9 ± 0.7 to 7.5 ± 3.4%. Twenty patients who had received a valve model implanted in fewer than 10 cases were excluded. Ten valve models (all tissue valves; n = 2938 patients) were analysed. At 1 year, population mean effective orifice area ranged from 1.46 ± 0.34 to 2.12 ± 0.59 cm2, and dimensionless velocity index, from 0.39 ± 0.07 to 0.56 ± 0.15. The mean gradient ranged from 8.6 ± 3.4 to 16.1 ± 6.2 mmHg with peak aortic velocity of 1.96 ± 0.39 to 2.65 ± 0.47 m/s. Stroke volume was 75.3 ± 19.6 to 89.8 ± 24.3 ml.

CONCLUSIONS: This pooled cohort is the largest to date of contemporary surgical aortic valves with echocardiograms analysed by a single core lab. Overall haemodynamic performance at 1 year ranged from good to excellent. These data can serve as a benchmark for other studies and may be useful to evaluate the performance of bioprosthetic surgical valves over time.

CLINICAL TRIAL REGISTRATION NUMBER: NCT02088554, NCT02701283, NCT01586910 and NCT01531374.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app