Add like
Add dislike
Add to saved papers

RG-I pectin-like polysaccharide from Rosa chinensis inhibits inflammation and fibrosis associated to HMGB1/TLR4/NF-κB signaling pathway to improve non-alcoholic steatohepatitis.

Carbohydrate Polymers 2024 August 2
A novel RG-I pectin-like polysaccharide, YJ3A1, was purified from the flowers of Rosa chinensis and its structure and hepatoprotective effect in vivo and in vitro were investigated. The backbone of this polysaccharide is mainly composed of 1, 4-galactan, 1, 4-linked α-GalpA and 1, 2-linked α-Rhap disaccharide repeating unit attached by 1, 6-linked β-Galp or 1, 5-linked α-Araf on C-4 of the Rhap. Interestingly, oral administration of YJ3A1 significantly ameliorates NASH-associated inflammation, oxidative stress and fibrosis and does not affect the liver morphology of normal mice at a dose of 50 mg/kg. The mechanism study suggests that the biological activity may associate to inactivating of high-mobility group box 1 protein (HMGB1)/TLR4/NF-κB and Akt signaling pathways by restraining the expression and release of HMGB1, thereby impeding the effect of NASH. The current findings outline a novel leading polysaccharide for new drug candidate development against NASH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app