Add like
Add dislike
Add to saved papers

A Feasible Dual Modification Strategy of Internal Anion Redox Chemistry and Surface Engineering on P2 Layer-Structured Cathodes in Sodium-Ion Batteries.

Boosting the anion redox reaction opens up a possibility of further capacity enhancement on transition-metal-ion redox-only layer-structured cathodes for sodium-ion batteries. To mitigate the deteriorating impact on the internal and surface structure of the cathode caused by the inevitable increase in the operation voltage, probing a solution to promote the bulk-phase crystal structure stability and surface chemistry environment to further facilitate the electrochemical performance enhancement is a key issue. A dual modification strategy of establishing an anion redox hybrid activation trigger agent inside the crystal structure in combination with surface oxide coating is successfully developed. P2-type layer structure cathode materials with Zn/Li (Na-O-Zn@Na-O-Li) anion redox hybrid triggers and a ZnO coating layer possess superior capacity and cycle performance, along with outstanding structural stability, decreased Mn-ion dissolution effect, and less crystal particle cracking during the cycling process. This study represents a facile modification solution to perform structure optimization and property enhancement toward high-performance layered structure cathode materials with anion redox features in sodium-ion batteries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app