Add like
Add dislike
Add to saved papers

Glycolic Acid-Induced Disruption of Epidermal Homeostasis in a Skin Equivalent Model: Insights into Temporal Dynamics and Mechanisms.

Glycolic acid (GA) is extensively used in cosmetic formulations and skin peeling treatments but its adverse effects, notably severe disruption of epidermal structure, limit its clinical utility. However, the detailed impact of GA on epidermal homeostasis, including changes in structure and protein expression over time, is not fully understood. This study employed a reconstructed human epidermis (RHE) model to assess the effects of varying GA concentrations on epidermal proliferation, differentiation, and desquamation at different time points. Through histology, immunofluorescence, and immunohistochemistry, we observed that 35% GA concentration adversely caused abnormal epidermal homeostasis by affecting epidermal proliferation, differentiation and desquamation. Our findings reveal time-specific responses of key proteins to GA: Filaggrin, Involucrin, Loricrin, and Ki67 showed very early responses; KLK10 an early response; and AQP3 and K10 late responses. This research provides a detailed characterization of GA's effects in an RHE model, mimicking clinical superficial peeling and identifying optimal times for detecting GA-induced changes. Our results offer insights for designing interventions to mitigate GA's adverse effects on skin, enhancing the safety and efficacy of GA peeling treatments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app