Add like
Add dislike
Add to saved papers

Enhanced removal of Pb(II) from acid mine drainage using green reduced graphene oxide/silver nanoparticles.

Mining activities can potentially release high levels of Pb(II) in acid mine drainage (AMD), which thereafter poses a significant threat to ecological security. In this study, green reduced graphene oxide/silver nanoparticles (rGO/Ag NPs) were successfully synthesized via a one-step approach using a green tea extract and subsequently used as a cost-effective absorbent to remove Pb(II) from AMD. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy indicated that organic functional groups in the green tea extracts, such as C=O-C, CO, and CC, acted both as reductants and stabilizers in the synthesis of rGO/Ag NPs. In addition, the removal efficiency of Pb(II) by rGO/Ag NPs (84.2 %) was much better than either rGO (75.4 %) or Ag NPs (12.3 %) alone. Also, in real AMD, the distribution coefficient (Kd ) of Pb(II) (4528 mL/g), was much higher than other heavy metal indicating the adsorbent had a high selective affinity for Pb(II). Interestingly, after five cycles of use, the removal efficiency of Pb(II) by rGO/Ag NPs from AMD actually increased from 46.4 to 65.2 % due to iron oxides (i.e., Fe2 O3 and Fe3 O4 ) being generated when rGO/Ag NPs was exposed to AMD. The removal of Pb(II) via adsorption on the rGO/Ag NPs surface involved formation of hexagonal rod-like precipitates. This work demonstrated the potential of rGO/Ag NPs to be continuously used for the removal of Pb(II) from AMD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app