Add like
Add dislike
Add to saved papers

Targeted blocking of EGFR and GLUT1 by compound H reveals a new strategy for treatment of triple-negative breast cancer and nasopharyngeal carcinoma.

BACKGROUND: Cytoplasmic epidermal growth factor receptor (EGFR) is overexpressed in both nasopharyngeal carcinoma (NPC) and triple-negative breast cancer (TNBC), while clinical outcome and prognosis vary greatly among patients treated with gefitinib, and all patients eventually develop resistance to this agent. Therefore, we propose a new concept for synthesizing multitarget compounds and reveal new therapeutic strategies for NPC and TNBC expressing EGFR.

METHODS: Compound H was synthesized in our previous study. Molecular docking and cell thermal shift assays (CETSAs) and drug affinity responsive target stability(DARTS) were used to confirm the binding of compound H to EGFR and GLUT1. Methylthiazolyldiphenyl-tetrazolium bromide(MTT), annexin V-PE assays, mitochondrial membrane potential (MMP) assays, and animal models were used to evaluate the inhibitory effect of compound H on TNBC cell lines. Energy metabolism tests, Western blotting, and immunofluorescence staining were performed to evaluate the synergistic effects on EGFR- and glucose transporter type 1(GLUT1)-mediated energy metabolism.

RESULTS: Compound H can simultaneously act on the EGFR tyrosine kinase ATP-binding site and inhibit GLUT1-mediated energy metabolism, resulting in reductions in ATP, MMP, intra-cellular lactic acid, and EGFR nuclear transfer. The anti-tumor activity of compound H is significantly superior to the combination of GLUT1 inhibitor BAY876 and EGFR inhibitor gefitinib. Compound H has remarkable anti-proliferative effects on TNBC MDA-MB231 cells, and importantly, no obvious toxicity effects of compound H were found in vivo.

CONCLUSIONS: Synergistic effects of inhibition of EGFR- and GLUT1-mediated energy metabolism by compound H may present a new strategy for the treatment of TNBC and NPC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app