Add like
Add dislike
Add to saved papers

Parameter calibration of discrete element model for gluten densification molding.

The densified powder material is convenient for storage and transportation, with broad market application prospects. In this study, the discrete element model parameters required for simulating gluten densification were calibrated using the Hertz-Mindlin with JKR contact model. Initially, physical testing techniques were utilized to assess the size distribution, density, and angle of repose (AoR) of gluten particles. Following this, the Plackett-Burman test, the steepest ascent test, and the Box-Behnken test were conducted, and the significant factors were obtained: The coefficient of rolling friction (P-P) was 1.038, the coefficient of static friction (P-P) was 0.071, and the surface energy (P-P) was 0.047. Finally, the AoR and densification simulations were performed under the optimal parameter combination, along with validation tests. The results showed that the relative error between the simulated and tested AoR was 0.52%. The compression ratio and compression force curves of simulated and actual were similar.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app