Add like
Add dislike
Add to saved papers

Assessing spatiotemporal risks of nonpoint source pollution via soil erosion: a coastal case in the Yellow River Delta, China.

Nonpoint source pollution (NPSP) has always been the dominant threat to regional waters. Based on empirical models of the revised universal soil loss equation and the phosphorus index, an NPSP risk assessment model denoted as SL-NPSRI was developed. The surface soil pollutant loss was estimated by simulating the rain-runoff topographic process, and the influence of path attenuation was quantified. A case study in the Yellow River Delta and corresponding field surveys of soil pollutants and water quality showed that the established model can be applied to evaluate the spatial heterogeneity of NPSP. NPSP usually occurs during high-intensity rainfall periods and in larger estuaries. Summer rainfall increased pollutant transport into the sea from late July to mid-August and caused estuarine dilution. Higher NPSP risks often correspond to coastal areas with lower vegetation coverage, higher soil erodibility, and higher soil pollutant concentrations. Agricultural NPSP originating from cropland significantly increase the pollutant fluxes. Therefore, area-specific land use management and vegetation coverage improvement, and temporal-specific strategies can be explored for NPSP control during source-transport hydrological processes. This research provides a novel insight for coastal NPSP simulations by comprehensively analyzing the soil erosion process and its associated pollutant loss effects, which can be useful for targeted spatiotemporal solutions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app