Add like
Add dislike
Add to saved papers

A stochastic scale conjugate neural network procedure for the SIRC epidemic delay differential system.

In this study, a stochastic computing structure is provided for the numerical solutions of the SIRC epidemic delay differential model, i.e. SIRC-EDDM using the dynamics of the COVID-19. The design of the scale conjugate gradient (CG) neural networks (SCGNNs) is presented for the numerical treatment of SIRC-EDDM. The mathematical model is divided into susceptible S(ρ), recovered R(ρ), infected I(ρ), and cross-immune C(ρ), while the numerical performances have been provided into three different cases. The exactitude of the SCGNNs is perceived through the comparison of the accomplished and reference outcomes (Runge-Kutta scheme) and the negligible absolute error (AE) that are performed around 10-06 to 10-08 for each case of the SIRC-EDDM. The obtained results have been presented to reduce the mean square error (MSE) using the performances of train, validation, and test data. The neuron analysis is also performed that shows the AE by taking 14 neurons provide more accurateness as compared to 4 numbers of neurons. To check the proficiency of SCGNNs, the comprehensive studies are accessible using the error histograms (EHs) investigations, state transitions (STs) values, MSE performances, regression measures, and correlation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app