Add like
Add dislike
Add to saved papers

Green Synthesis and Characterization of Biologically Synthesized and Antibiotic-Conjugated Silver Nanoparticles followed by Post-Synthesis Assessment for Antibacterial and Antioxidant Applications.

ACS Omega 2024 April 31
The paper presents the antibacterial and antioxidant activities of silver nanoparticles (AgNPs) when conjugated with two antibiotics levofloxacin and ciprofloxacin as well as biologically synthesized nanoparticles from Moringa oleifera and Curcuma longa . Leaves of Moringa and powder of Curcuma were used in the green synthesis of silver nanoparticles. Ultraviolet-visible spectroscopy (UV), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) were used for the characterization of the synthesized silver nanoparticles. Comparison of levofloxacin and ciprofloxacin and their conjugated AgNPs was also studied for antibacterial and antioxidant activity. The synthesis of Moringa -AgNPs, turmeric-AgNPs, levofloxacin-AgNPs, and ciprofloxacin-AgNPs was confirmed by UV spectroscopy. An absorption peak value of 400-450 nm was observed, and light to dark brown color indicated the synthesis of AgNPs. Moringa -AgNPs revealed high antioxidant activity (80.3 ± 3.14) among all of the synthesized AgNPs. Lev-AgNPs displayed the highest zone of inhibition for Staphylococcus aureus , while in Escherichia coli , Cip-AgNPs showed high antibacterial activity. Furthermore, AgNPs synthesized using green methods exhibit high and efficient antimicrobial activities against two food-borne pathogens. Biologically synthesized nanoparticles exhibited antibacterial activity against E. coli (13.73 ± 0.46 with Tur-AgNPs and 13.53 ± 0.32 with Mor-AgNPs) and S. aureus (14.16 ± 0.24 with Tur-AgNPs and 13.36 ± 0.77 with Mor-AgNPs) by using a well diffusion method with significant shrinkage and damage of the bacterial cell wall, whereas antibiotic-conjugated nanoparticles showed high antibacterial activity compared to biologically synthesized nanoparticles with 14.4 ± 0.37 for Cip-AgNPs and 13.93 ± 0.2 for Lev-AgNPs for E. coli and 13.3 ± 0.43 for Cip-AgNPs and 14.33 ± 0.12 for Lev-AgNPs for S. aureus . The enhanced efficiency of conjugated silver nanoparticles is attributed to their increased surface area compared to larger particles. Conjugation of different functional groups contributes to improved reactivity, creating active sites for catalytic reactions. Additionally, the precise control over the size and shape of green-synthesized nanoparticles further augments their catalytic and antibiotic activities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app