Add like
Add dislike
Add to saved papers

Numerical Modeling of Foam Carrying Sand Transport in Multifactor Horizontal Wells.

ACS Omega 2024 April 31
The solution of wellbore multiphase flow models has an important position in oil-gas field development. However, the solution of multiphase flow models often involves a series of complicated situations such as interphase mass and energy transfer, surface problems, and so on. Foam carrying sand particles in the wellbore is a solid, liquid, and gas three-phase cylinder flow problem. To solve this problem, we developed a computational fluid dynamics-discrete element method model based on the traditional N-S equations to track the streamline of the foam fluid and sand particles in the wellbore. On this basis, we investigated the influence of three factors, i.e., foam and sand properties and wellbore parameters, on the sand carrying rate of foam. The results show that whether the sand mound at the bottom of wells that can be dispersed is mainly affected by the properties of foam. The location of sand deposition in the wellbore and the effectiveness of foam in sand transportation are mainly influenced by the wellbore parameters and sand properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app