Add like
Add dislike
Add to saved papers

DNMT3A-mediated DNA methylation and transcription inhibition of FZD5 suppresses lung carcinogenesis.

Heliyon 2024 May 16
BACKGROUND: Based on the bioinformatics prediction, this study investigates the correlation between aberrant transcription factor Frizzled 5 (FZD5) expression and the establishment of non-small cell lung cancer (NSCLC).

METHODS: A mouse model with regard to primary NSCLC was encouraged by intraperitoneal injection of urethane. Lentivirus-based FZD5 silencing was then administrated to examine its role in tumorigenesis in the mouse lung. Silencing of FZD5 was induced in two NSCLC cell lines to examine its function in the malignant behavior pertaining to cells in vitro . Quantitative methylation-specific PCR was employed to assess the DNA methylation level within the NSCLC cells. DNA methyltransferases (DNMTs) that administer FZD5 were assessed by chromatin immunoprecipitation assay. Consequently, overexpression of DNMT3A was introduced in mice and NSCLC cells to verify its regulation on FZD and its biological roles in NSCLC development.

RESULTS: In NSCLC, FZD5 expression is elevated, and its knockdown reduced tumor incidence rate in the urethane-challenged mice. The FZD5 silencing also inhibited proliferation, migration, as well as invasion with regard to Calu-3 and NCI-H1299 cells in vitro . The aberrant upregulation with regard to FZD5 in NSCLC was due to at least partly by reduced promoter methylation level. DNMT3A, which bound to FZD5 promoter to suppress its transcription, was poorly expressed in NSCLC. Artificial upregulation of DNMT3A suppressed urethane-induced lung carcinogenesis in mice and suppressed the malignant phenotype pertaining to NSCLC cells in vitro .

CONCLUSION: This research demonstrates that the lack of DNA methylation level-induced activation of FZD5 is correlated with NSCLC's onset and progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app