Add like
Add dislike
Add to saved papers

Rare subcommunity maintains the stability of ecosystem multifunctionality by deterministic assembly processes in subtropical estuaries.

Microorganisms, especially rare microbial species, are crucial in estuarine ecosystems for driving biogeochemical processes and preserving biodiversity. However, the understanding of the links between ecosystem multifunctionality (EMF) and the diversity of rare bacterial taxa in estuary ecosystems remains limited. Employing high-throughput sequencing and a variety of statistical methods, we assessed the diversities and assembly process of abundant and rare bacterioplankton and their contributions to EMF in a subtropical estuary. Taxonomic analysis revealed Proteobacteria as the predominant phylum among both abundant and rare bacterial taxa. Notably, rare taxa demonstrated significantly higher taxonomic diversity and a larger species pool than abundant taxa. Additionally, our findings highlighted that deterministic assembly processes predominantly shape microbial communities, with heterogeneous selection exerting a stronger influence on rare taxa. Further analysis reveals that rare bacterial beta-diversity significantly impacts to EMF, whereas alpha diversity did not. The partial least squares path modeling (PLS-PM) analysis demonstrated that the beta diversity of abundant and rare taxa, as the main biotic factor, directly affected EMF, while temperature and total organic carbon (TOC) were additional key factors to determine the relationship between beta diversity and EMF. These findings advance our understanding of the distribution features and ecological knowledge of the abundant and rare taxa in EMF in subtropical estuaries, and provide a reference for exploring the multifunctionality of different biospheres in aquatic environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app