Journal Article
Review
Add like
Add dislike
Add to saved papers

Next-Generation Cardiac Interfacing Technologies Using Nanomaterial-Based Soft Bioelectronics.

ACS Nano 2024 May 6
Cardiac interfacing devices are essential components for the management of cardiovascular diseases, particularly in terms of electrophysiological monitoring and implementation of therapies. However, conventional cardiac devices are typically composed of rigid and bulky materials and thus pose significant challenges for effective long-term interfacing with the curvilinear surface of a dynamically beating heart. In this regard, the recent development of intrinsically soft bioelectronic devices using nanocomposites, which are fabricated by blending conductive nanofillers in polymeric and elastomeric matrices, has shown great promise. The intrinsically soft bioelectronics not only endure the dynamic beating motion of the heart and maintain stable performance but also enable conformal, reliable, and large-area interfacing with the target cardiac tissue, allowing for high-quality electrophysiological mapping, feedback electrical stimulations, and even mechanical assistance. Here, we explore next-generation cardiac interfacing strategies based on soft bioelectronic devices that utilize elastic conductive nanocomposites. We first discuss the conventional cardiac devices used to manage cardiovascular diseases and explain their undesired limitations. Then, we introduce intrinsically soft polymeric materials and mechanical restraint devices utilizing soft polymeric materials. After the discussion of the fabrication and functionalization of conductive nanomaterials, the introduction of intrinsically soft bioelectronics using nanocomposites and their application to cardiac monitoring and feedback therapy follow. Finally, comments on the future prospects of soft bioelectronics for cardiac interfacing technologies are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app