Add like
Add dislike
Add to saved papers

Bmi1 facilitates the progression of cholangiocarcinoma by inhibiting Foxn2 expression dependent on a histone H2A ubiquitination manner.

Cancer Letters 2024 May 4
Cholangiocarcinoma (CCA), an exceptionally aggressive malignancy originating from the epithelium of the bile duct, poses a formidable challenge in cancer research and clinical management. Currently, attention is focused on exploring the oncogenic role and prognostic implications associated with Bmi1 in the context of CCA. In our study, we assessed the correlation of Bmi1 and Foxn2 expression across all types of CCA and evaluated their prognostic significance. Our results demonstrated that Bmi1 exhibits significantly upregulated expression in CCA tissues, while Foxn2 expression shows an inverse pattern. Simultaneously, the high expression of Bmi1, coupled with the low expression of Foxn2, indicates an unfavorable prognosis. Through in vitro and in vivo experiments, we confirmed the crucial role of Foxn2 in the proliferation, metastasis, and epithelial-mesenchymal transition (EMT) of CCA. Mechanistically, Bmi1 promotes the ubiquitination of histone H2A (H2AUb), leading to chromatin opening attenuation and a decrease in Foxn2 expression, ultimately driving CCA progression. Additionally, we described the potential value of Bmi1 and H2AUb inhibitors in treating CCA through in vitro experiments and orthotopic models. This study is of significant importance in deepening our understanding of the interaction between Bmi1 and Foxn2 in CCA and has the potential to advance the development of precision therapies for CCA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app