Add like
Add dislike
Add to saved papers

WO 3-x as an activation medium to prompt overall water splitting of NiFe-based electrocatalyst.

The efficient oxygen evolution reaction (OER) is crucial for various electrochemical processes, especially for overall water splitting (OWS). In this study, we focus on the utilization of WO3-x as an activation medium to enhance the OER performance of NiFe-based electrocatalysts. Firstly, we synthesize WO3-x nanowires supported on nickel foam (NF) and then incorporate NiFe on WO3-x nanowires by a simple hydrothermal method. The WO3-x self-supported NiFe (Oxy)hydroxide (denoted as NiFe-W-O/NF) shows a three-dimensional stereostructure composed of ultrathin nanosheets (∼ 4.0 nm). This unique structure provides a large open surface for fuller diffusion of the electrolyte while exposing more active sites. The electronic interaction of tri-centers of NiFeW accelerates the surface reconstruction process of γ-NiOOH and FeOOH, which are converted into the main active species in a short time. The electrochemical measurements confirm that the NiFe-W-O/NF has low OER overpotentials (233 mV at 10 mA cm-2 , 298 mV at 100 mA cm-2 ) and excellent stability (100 h in total) in 1 M KOH electrolyte. In addition, the NiFe-W-O/NF || NiFe-W-O/NF battery also exhibits a low cell voltage (1.52 V at 10 mA cm-2 ) with a stable lifetime (50 h) under alkaline conditions. These results highlight the great potential of NiFe-W-O/NF for practical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app