Add like
Add dislike
Add to saved papers

Self-healing Polyurethane Elastomers with Superior Tensile Strength and Elastic Recovery Based on Dynamic Oxime-carbamate and Hydrogen Bond Interactions.

The preparation of self-healing polyurethane elastomers (PUEs) incorporating dynamic bonds is of considerable practical significance. However, developing a PUE with outstanding mechanical properties and high self-healing efficiency poses a significant challenge. Herein, we have successfully developed a series of self-healing PUEs with various outstanding properties through rational molecular design. These PUEs incorporate m-xylylene diisocyanate and reversible dimethylglyoxime as hard segment, along with polytetramethylene ether glycol as soft segment. A significant amount of dynamic oxime-carbamate and hydrogen bonds are formed in hard segment. The microphase separated structure of the PUEs enables them to be colorless with a transparency of > 90%. Owing to the chemical composition and multiple dynamic interactions, the PUEs were endowed with ultra-high tensile strength of 34.5 MPa, satisfactory toughness of 53.9 MJ m-3 , and great elastic recovery both at low and high strains. The movement of polymer molecular chains and the dynamic reversible interactions render a self-healing efficiency of 101% at 70 °C. In addition, this self-healing polyurethane could still maintain high mechanical properties after recycling. This study provides a design strategy for the preparation of a comprehensive polyurethane with superior overall performance, which holds wide application prospects in the fields of flexible displays and solar cells. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app