Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Differential diagnosis of thyroid nodules using heterogeneity quantification software on ultrasound images: correlation with the Bethesda system and surgical pathology.

Ultrasonography (US)-guided fine-needle aspiration cytology (FNAC) is the primary modality for evaluating thyroid nodules. However, in cases of atypia of undetermined significance (AUS) or follicular lesion of undetermined significance (FLUS), supplemental tests are necessary for a definitive diagnosis. Accordingly, we aimed to develop a non-invasive quantification software using the heterogeneity scores of thyroid nodules. This cross-sectional study retrospectively enrolled 188 patients who were categorized into four groups according to their diagnostic classification in the Bethesda system and surgical pathology [II-benign (B) (n = 24); III-B (n = 52); III-malignant (M) (n = 54); V/VI-M (n = 58)]. Heterogeneity scores were derived using an image pixel-based heterogeneity index, utilized as a coefficient of variation (CV) value, and analyzed across all US images. Differences in heterogeneity scores were compared using one-way analysis of variance with Tukey's test. Diagnostic accuracy was determined by calculating the area under the receiver operating characteristic (AUROC) curve. The results of this study indicated significant differences in mean heterogeneity scores between benign and malignant thyroid nodules, except in the comparison between III-M and V/VI-M nodules. Among malignant nodules, the Bethesda classification was not observed to be associated with mean heterogeneity scores. Moreover, there was a positive correlation between heterogeneity scores and the combined diagnostic category, which was based on the Bethesda system and surgical cytology grades (R = 0.639, p < 0.001). AUROC for heterogeneity scores showed the highest diagnostic performance (0.818; cut-off: 30.22% CV value) for differentiating the benign group (normal/II-B/III-B) from the malignant group (III-M/V&VI-M), with a diagnostic accuracy of 72.5% (161/122). Quantitative heterogeneity measurement of US images is a valuable non-invasive diagnostic tool for predicting the likelihood of malignancy in thyroid nodules, including AUS or FLUS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app