Add like
Add dislike
Add to saved papers

Azadirachta indica leaf extract based green-synthesized ZnO nanoparticles coated on spent tea waste activated carbon for pharmaceuticals and personal care products removal.

Pharmaceuticals and personal care products (PPCPs) are emerging contaminants in aqueous systems, posing threat to both human health and environment. In prior research, predominant focus has been on examining various adsorbents for removing PPCPs from single-pollutant systems. However, no study has delved into simultaneous adsorption of PPCPs multi-pollutant mixture. This study evaluates performance of Azadirachta indica leaf extract-based green-synthesized ZnO nanoparticles coated on spent tea waste activated carbon (ZTAC) for removing sulfadiazine (SZN) and acetaminophen (ACN). Adsorption investigations were conducted in single-component (ACN/SZN) and binary-component (ACN+SZN) systems. The synthesized ZTAC was characterized using SEM, XRD, FTIR, EDX, porosimetry and pHpzc analysis. The study examines impact of time (1 to 60 min), dose (0.2-4 g/L), pH (2 to 12) and PPCPs concentration (1-100 mg/L) on ACN and SZN removal. Various kinetic and isotherm models were employed to elucidate mechanisms involved in sorption of PPCPs. Furthermore, synergistic and antagonistic aspects of sorption process in multi-component system were investigated. ZTAC, characterized by its crystalline nature and surface area of 980.85 m2 /g, exhibited maximum adsorption capacity of 47.39 mg/g for ACN and 34.01 mg/g for SZN under optimal conditions of 15 min, 3 g/L and pH 7. Langmuir isotherm and pseudo-second-order kinetic model best-fitted the experimental data indicating chemisorption mechanism. Removal of ACN and SZN on ZTAC demonstrated synergistic nature, signifying cooperative adsorption. Overall, valorization of ZTAC offers effective and efficient adsorbent for elimination of PPCPs from wastewater.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app