Add like
Add dislike
Add to saved papers

Rosmarinic acid ameliorated oxidative stress, neuronal injuries, and mitochondrial dysfunctions mediated by polyglutamine and ɑ-synuclein in Caenorhabditis elegans models.

Numerous natural antioxidants have been developed into agents for neurodegenerative diseases (NDs) treatment. Rosmarinic acid (RA), an excellent antioxidant, exhibits neuroprotective activity, but its anti-NDs efficacy remains puzzling. Here, Caenorhabditis elegans models were employed to systematically reveal RA-mediated mechanisms in delaying NDs from diverse facets, including oxidative stress, the homeostasis of neural and protein, and mitochondrial disorders. Firstly, RA significantly inhibited reactive oxygen species accumulation, reduced peroxide malonaldehyde production, and strengthened the antioxidant defense system via increasing superoxide dismutase activity. Besides, RA reduced neuronal loss and ameliorated polyglutamine and ɑ-synuclein-mediated dyskinesia in NDs models. Further, in combination with the data and molecular docking results, RA may bind specifically to Huntington protein and ɑ-synuclein to prevent toxic protein aggregation and thus enhance proteostasis. Finally, RA ameliorated mitochondrial dysfunction including increasing adenosine triphosphate and mitochondrial membrane potential levels and rescuing mitochondrial membrane proteins' expressions and mitochondrial structural abnormalities via regulating mitochondrial dynamics genes and improving the mitochondrial kinetic homeostasis. Thus, this study systematically revealed the RA-mediated neuroprotective mechanism and promoted RA as a promising nutritional intervention strategy to prevent NDs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app