Add like
Add dislike
Add to saved papers

Strong habitat and seasonal phenology effects on the evolution of self-compatibility, clonality and pollinator shifts in Lachenalia (Asparagaceae: Scilloideae).

New Phytologist 2024 May 5
Plants employ a diversity of reproductive safeguarding strategies to circumvent the challenge of pollen limitation. Focusing on southern African Lachenalia (Asparagaceae: Scilloideae), we test the hypothesis that the evolution of reproductive safeguarding traits (self-compatibility, autonomous selfing, bird pollination and clonal propagation) is favoured in species occupying conditions of low insect abundance imposed by critically infertile fynbos heathland vegetation and by flowering outside the austral spring insect abundance peak. We trace the evolution of these traits and selective regimes on a dated, multi-locus phylogeny of Lachenalia and assess their evolutionary associations using ordinary and phylogenetic regression. Ancestral state reconstructions identify an association with non-fynbos vegetation and spring flowering as ancestral in Lachenalia, the transition to fynbos vegetation and non-spring flowering taking place multiple times. They also show that self-compatibility, autofertility, bird pollination and production of multiple clonal offsets have evolved repeatedly. Regression models suggest that bird pollination and self-compatibility are selected for in fynbos and in non-spring flowering lineages, with autofertility being positively associated with non-spring flowering. These patterns support the interpretation of these traits as reproductive safeguarding adaptations under reduced insect pollinator abundance. We find no evidence to support the interpretation of clonal propagation as a reproductive safeguarding strategy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app