Add like
Add dislike
Add to saved papers

Organic Matter Accumulation and Hydrology as Drivers of Greenhouse Gas Dynamics in Newly Developed Artificial Channels.

Artificial channels, common features of inland waters, have been suggested as significant contributors to methane (CH4 ) and carbon dioxide (CO2 ) dynamics and emissions; however, the magnitude and drivers of their CH4 and CO2 emissions (diffusive and ebullitive) remain unclear. They are characterized by reduced flow compared to the donor river, which results in suspended organic matter (OM) accumulation. We propose that in such systems hydrological controls will be reduced and OM accumulation will control emissions by promoting methane production and outgassing. Here, we monitored summertime CH4 and CO2 concentrations and emissions on six newly constructed river-fed artificial channels, from bare riparian mineral soil to lotic channels, under two distinct flow regimes. Chamber-based fluxes were complemented with hydrology, total fluxes (diffusion + ebullition), and suspended OM accumulation assessments. During the first 6 weeks after the flooding, inflowing riverine water dominated the emissions over in-channel contributions. Afterwards, a substantial accumulation of riverine suspended OM (≥50% of the channel's volume) boosted in-channel methane production and led to widespread ebullition 10× higher than diffusive fluxes, regardless of the flow regime. Our finding suggests ebullition as a dominant pathway in these anthropogenic systems, and thus, their impact on regional methane emissions might have been largely underestimated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app