Add like
Add dislike
Add to saved papers

Protein and Polysaccharide Recovery from Shrimp Wastes by Natural Deep Eutectic Solvent Mediated Subcritical Water Hydrolysis for Biodegradable Film.

Environmental pollution is a significant problem due to the improper disposal of plastics and shrimp shells outdoors. Therefore, the synthesis of biodegradable film from waste materials is highly important. The novelty of this research lies in the extraction of protein hydrolysates and chitosan from shrimp shells, as well as the fabrication of biodegradable film from these materials. In this study, the composite films were produced using the solution casting method. Moreover, the combined effect of ultrasound pretreatments (UPT) and natural deep eutectic solvents (NADES) was investigated as extraction media, to determine their potential impact on shrimp waste subcritical water hydrolysis (SWH). Shrimp shells were submitted to UPT in NADES solution, followed by SWH at different temperatures ranging from 150 to 230 °C under 3 MPa for 20 min. Then, the physiochemical properties and bioactivities of the hydrolysates were assessed to determine their suitability for use in biodegradable packaging films. Additionally, the physiochemical properties and bioactivities of the resulting hydrolysates were also analyzed. The highest amount of protein (391.96 ± 0.48 mg BSA/g) was obtained at 190 °C/UPT/NADES, and the average molecular size of the protein molecules was less than 1000 Da with different kinds of peptide. Overall, combined UPT and SWH treatments yielded higher antioxidant activity levels than individual treatments. Finally, the application of composite films was evaluated by wrapping fish samples and assessing their lipid oxidation. The use of higher concentrations of protein hydrolysates significantly delayed changes in the samples, thereby demonstrating the film's applicability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app