Add like
Add dislike
Add to saved papers

Electron ionization mass spectrometry feature peak relationships combined with deep classification model to assist similarity algorithm for fast and accurate identification of compounds.

RATIONALE: Gas chromatography-mass spectrometry (GC-MS) combines chromatography and MS, providing full play to the advantages of high separation efficiency of GC, strong qualitative ability of MS, and high sensitivity of detector. In GC-MS data processing, determining the experimental compounds is one of the most important analytical steps, which is usually realized by one-to-one similarity calculations between the experimental mass spectrum and the standard mass spectrum library. Although the accuracy of the algorithm has been improved in recent years, it is still difficult to distinguish structurally similar mass spectra, especially isomers. At the same time, the library capacity is very large and increasing every year, and the algorithm needs to perform large numbers of calculations with irrelevant compounds in the library to recognize unknown compounds, which leads to a significant reduction in efficiency.

METHODS: This work proposed to exclude a large number of irrelevant mass spectra by presearching, perform preliminary similarity calculations using similarity algorithms, and finally improve the accuracy of similarity calculations using deep classification models. The replica library of NIST17 is used as the query data, and the master library is used as the reference database.

RESULTS: Compared with the traditional recognition algorithm, the preprocessing algorithm has reduced the time by 4.2 h, and by adding the deep learning models 1 and 2 as the final determination, the recognition accuracy has been improved by 1.9% and 6.5%, respectively, based on the original algorithm.

CONCLUSIONS: This method improves the recognition efficiency compared to conventional algorithms and at the same time has better recognition accuracy for structurally similar mass spectra and isomers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app