Add like
Add dislike
Add to saved papers

Decoding temporal muscle synergy patterns based on brain activity for upper extremity in ADL movements.

Muscle synergies have been hypothesized as specific predefined motor primitives that the central nervous system can reduce the complexity of motor control by using them, but how these are expressed in brain activity is ambiguous yet. The main purpose of this paper is to develop synergy-based neural decoding of motor primitives, so for the first time, brain activity and muscle synergy map of the upper extremity was investigated in the activity of daily living movements. To find the relationship between brain activities and muscle synergies, electroencephalogram (EEG) and electromyogram (EMG) signals were acquired simultaneously during activities of daily living. To extract the maximum correlation of neural commands with muscle synergies, application of a combined partial least squares and canonical correlation analysis (PLS-CCA) method was proposed. The Elman neural network was used to decode the relationship between extracted motor commands and muscle synergies. The performance of proposed method was evaluated with tenfold cross-validation and muscle synergy estimation of brain activity with R, VAF, and MSE of 84 ± 2.6%, 70 ± 4.7%, and 0.00011 ± 0.00002 were quantified respectively. Furthermore, the similarity between actual and reconstructed muscle activations was achieved more than 92% for correlation coefficient. To compare with the existing methods, our results showed significantly more accuracy of the model performance. Our results confirm that use of the expression of muscle synergies in brain activity can estimate the neural decoding performance for motor control that can be used to develop neurorehabilitation tools such as neuroprosthesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app