Add like
Add dislike
Add to saved papers

Rational engineering of homospermidine synthase for enhanced catalytic efficiency toward spermidine synthesis.

Spermidine is a naturally occurring polyamine widely utilized in the prevention and treatment of various diseases. Current spermidine biosynthetic methods have problems such as low efficiency and complex multi-enzyme catalysis. Based on sequence-structure-function relationships, we engineered the widely studied homospermidine synthase from Blastochloris viridis ( Bv HSS) and obtained mutants that could catalyze the production of spermidine from 1,3-diaminopropane and putrescine. The specific activities of Bv HSS and the mutants D361E and E232D + D361E (E232D-D) were 8.72, 46.04 and 48.30 U/mg, respectively. The optimal pH for both mutants was 9.0, and the optimal temperature was 50 °C. Molecular docking and dynamics simulations revealed that mutating aspartic acid at position 361 to glutamic acid narrowed the substrate binding pocket, promoting stable spermidine production. Conversely, mutating glutamic acid at position 232 to aspartic acid enlarged the substrate channel entrance, facilitating substrate entry into the active pocket and enhancing spermidine generation. In whole-cell catalysis lasting 6 h, D361E and E232D-D synthesized 725.3 and 933.5 mg/L of spermidine, respectively. This study offers a practical approach for single-enzyme catalyzed spermidine synthesis and sheds light on the crucial residues influencing homospermidine synthase catalytic activity in spermidine production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app