Add like
Add dislike
Add to saved papers

Pine wilt disease detection algorithm based on improved YOLOv5.

Pine wilt disease (PWD) poses a significant threat to forests due to its high infectivity and lethality. The absence of an effective treatment underscores the importance of timely detection and isolation of infected trees for effective prevention and control. While deep learning techniques combined unmanned aerial vehicle (UAV) remote sensing images offer promise for accurate identification of diseased pine trees in their natural environments, they often demand extensive prior professional knowledge and struggle with efficiency. This paper proposes a detection model YOLOv5L-s-SimAM-ASFF, which achieves remarkable precision, maintains a lightweight structure, and facilitates real-time detection of diseased pine trees in UAV RGB images under natural conditions. This is achieved through the integration of the ShuffleNetV2 network, a simple parameter-free attention module known as SimAM, and adaptively spatial feature fusion (ASFF). The model boasts a mean average precision (mAP) of 95.64% and a recall rate of 91.28% in detecting pine wilt diseased trees, while operating at an impressive 95.70 frames per second (FPS). Furthermore, it significantly reduces model size and parameter count compared to the original YOLOv5-Lite. These findings indicate that the proposed model YOLOv5L-s-SimAM-ASFF is most suitable for real-time, high-accuracy, and lightweight detection of PWD-infected trees. This capability is crucial for precise localization and quantification of infected trees, thereby providing valuable guidance for effective management and eradication efforts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app