Add like
Add dislike
Add to saved papers

Surgical restabilization reduces the progression of post-traumatic osteoarthritis initiated by ACL rupture in mice.

OBJECTIVE: People who sustain joint injuries such as anterior cruciate ligament (ACL) rupture often develop post-traumatic osteoarthritis (PTOA). In human patients, ACL injuries are often treated with ACL reconstruction. However, it is still unclear how effective joint restabilization is for reducing the progression of PTOA. The goal of this study was to determine how surgical restabilization of a mouse knee joint following non-invasive ACL injury affects PTOA progression.

DESIGN: In this study, 187 mice were subjected to non-invasive ACL injury or no injury. After injury, mice underwent restabilization surgery, sham surgery, or no surgery. Mice were then euthanized on day 14 or day 49 after injury/surgery. Functional analyses were performed at multiple time points to assess voluntary movement, gait, and pain. Knees were analyzed ex vivo with micro-computed tomography, RT-PCR, and whole-joint histology to assess articular cartilage degeneration, synovitis, and osteophyte formation.

RESULTS: Both ACL injury and surgery resulted in loss of epiphyseal trabecular bone (-27-32%) and reduced voluntary movement at early time points. Joint restabilization successfully lowered OA score (-78% relative to injured at day 14, p<0.0001), and synovitis scores (-37% relative to injured at day 14, p=0.042), and diminished the formation of chondrophytes/osteophytes (-97% relative to injured at day 14, p<0.001, -78% at day 49, p<0.001).

CONCLUSIONS: This study confirmed that surgical knee restabilization was effective at reducing articular cartilage degeneration and diminishing chondrophyte/osteophyte formation after ACL injury in mice, suggesting that these processes are largely driven by joint instability in this mouse model. However, restabilization was not able to mitigate the early inflammatory response and the loss of epiphyseal trabecular bone, indicating that these processes are independent of joint instability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app