Add like
Add dislike
Add to saved papers

Developing Hybrid Systems to Address Oxygen Uncoupling in Multi-Component Rieske Oxygenases.

Rieske non-heme iron oxygenases (ROs) are redox enzymes that are essential for microbial biodegradation and natural product synthesis. These enzymes utilize molecular oxygen for oxygenation reactions, making them very useful in applied enzymology due to their broad reaction scope and high selectivities. The mechanism of oxygen activation in ROs involves electron transfers between redox centers of associated protein components, forming an electron transfer chain (ETC). Although the ETC is essential for electron replenishment, it carries the risk of reactive oxygen species (ROS) formation due to electron loss during oxygen activation. Our previous study linked ROS formation to O2 uncoupling in the flavin-dependent reductase of the three-component cumene dioxygenase (CDO). In the present study, we extend this finding by investigating the effects of ROS formation on the multi-component CDO system in a cell-free environment. In particular, we focus on the effects of hydrogen peroxide (H2 O2 ) formation in the presence of a NADH cofactor regeneration system on the efficiency of CDO catalytic efficacy in vitro. Based on this, we propose the implementation of hybrid systems with alternative (non-native) redox partners for CDO, which are highly advantageous in terms of reduced H2 O2 formation and increased product formation. The hybrid system consisting of the RO-reductase from phthalate dioxygenase (PDR) and CDO proved to be the most promising for the oxyfunctionalization of indene, showing a 4-fold increase in product formation (20mM) over 24h (TTN = 1515) at a 3-fold increase in production rate in comparison to a previously reported cell-free reaction system for CDO.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app