Add like
Add dislike
Add to saved papers

Multivariate analysis applied to X-ray fluorescence to assess soil contamination pathways: case studies of mass magnetic susceptibility in soils near abandoned coal and W/Sn mines.

Determining the origin and pathways of contaminants in the natural environment is key to informing any mitigation process. The mass magnetic susceptibility of soils allows a rapid method to measure the concentration of magnetic minerals, derived from anthropogenic activities such as mining or industrial processes, i.e., smelting metals (technogenic origin), or from the local bedrock (of geogenic origin). This is especially effective when combined with rapid geochemical analyses of soils. The use of multivariate analysis (MVA) elucidates complex multiple-component relationships between soil geochemistry and magnetic susceptibility. In the case of soil mining sites, X-ray fluorescence (XRF) spectroscopic data of soils contaminated by mine waste shows statistically significant relationships between magnetic susceptibility and some base metal species (e.g., Fe, Pb, Zn, etc.). Here, we show how qualitative and quantitative MVA methodologies can be used to assess soil contamination pathways using mass magnetic susceptibility and XRF spectra of soils near abandoned coal and W/Sn mines (NW Portugal). Principal component analysis (PCA) showed how the first two primary components (PC-1 + PC-2) explained 94% of the sample variability, grouped them according to their geochemistry and magnetic susceptibility in to geogenic and technogenic groups. Regression analyses showed a strong positive correlation (R2  > 0.95) between soil geochemistry and magnetic properties at the local scale. These parameters provided an insight into the multi-element variables that control magnetic susceptibility and indicated the possibility of efficient assessment of potentially contaminated sites through mass-specific soil magnetism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app