Add like
Add dislike
Add to saved papers

A biomechanical analysis of novel endovascular implants for aortic valve replacement and ascending aortic repair.

Advances in medical technology have enabled minimally invasive treatment of type A aortic dissection with accompanying aortic regurgitation. Implants include endovascular stent grafts (ESG) and heart valve substitute (HVS) modules. Traditional implants can be divided into two types based on the assembly relationship between ESG and HVS: separated z-shaped implants (SZ) and separated diamond-shaped implants (SD). This study proposes a novel linked diamond-shaped implant (LD). To evaluate the safety and effectiveness of this new implant, finite element simulation models were created to assess the risks of endoleak, migration, and vascular wall rupture under annulus displacement load. After the SZ, SD, and LD implants were grafted in virtual release method, all the implants can cover tear-entry located in the ascending aorta, but space distance ( δ ) which exposed to blood was 14.5, 13.1, and 7.4 mm, respectively; the maximum areas of contact gap was 76.5, 51.5 and 6.3 mm2 ; the maximum migration distance (ΔL1) were 1.27, 1.06, and 0.1 mm; the maximum stress on ascending aorta was 0.19, 0.24, and 0.51 MPa, which were lower than failure stress (0.9 MPa). This study showed that both SZ and SD implants had minimal effects on the ascending aorta; however, higher risks were associated with implant migration and proximal endoleak. In contrast, the LD implant can simplify the surgical procedure, has a lower risk of endoleak and migration, and limited stress stimulation of the aorta. This study validated the feasibility and effectiveness of this novel implant using the finite element method, indicating its potential as a secure and reliable treatment option.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app